## MATHEMATICS

| Q. 1 | Write True or False: Give reasons for your answers. <br> (i) Line segment joining the centre to any point on the circle is a radius of the circle. <br> (ii) A circle has only finite number of equal chords. <br> (iii) If a circle is divided into three equal arcs, each is a major arc. <br> (iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle. <br> (v) Sector is the region between the chord and its corresponding arc. <br> (vi) A circle is a plane figure. |
| :---: | :---: |
| Q. 2 | Show that the diagonals of a parallelogram divide it into four triangles of equal area. |
| Q. 3 | In the given figure, $\mathrm{AP}\\|\mathrm{BQ}\\| \mathrm{CR}$. Prove that ar $(\mathrm{AQC})=\operatorname{ar}(\mathrm{PBR})$. |
| Q. 4 | In the given figure, $\angle \mathrm{ABC}=69^{\circ}, \angle \mathrm{ACB}=31^{\circ}$, find $\angle \mathrm{BDC}$. |
| Q. 5 | A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc. |
| Q. 6 | When three coins are tossed simultaneously, find the probability of getting at least two tails. |
| Q. 7 | P and Q are respectively the mid-points of sides AB and BC of a triangle ABC and R is the mid-point of AP, show that <br> (i) $\operatorname{ar}(P R Q)=\frac{1}{2} \operatorname{ar}($ ARC $)$ <br> (ii) $\operatorname{ar}(\mathrm{RQC})=\frac{3}{8} \operatorname{ar}(\mathrm{ABC})$ <br> (iii) $\operatorname{ar}(P B Q)=\operatorname{ar}(A R C)$ |


| Q. 8 | Find the amount of water displaced by a solid spherical ball of diameter <br> (i) 28 cm <br> (ii) 0.21 m $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| :---: | :---: |
| Q. 9 | A farmer was having a field in the form of a parallelogram PQRS. She took any point A on RS and joined it to points $P$ and $Q$. In how many parts the field is divided? What are the shapes of these parts? The farmer wants to sow wheat and pulses in equal portions of the field separately. How should she do it? |
| Q. 10 | The students of a Vidyalaya were asked to participate in a competition for making and decorating penholders in the shape of a cylinder with a base, using cardboard. Each penholder was to be of radius 3 cm and height 10.5 cm . The Vidyalaya was to supply the competitors with cardboard. If there were 35 competitors, how much cardboard was required to be bought for the competition? $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 11 | The floor of a rectangular hall has a perimeter 250 m . If the cost of panting the four walls at the rate of Rs. 10 per $\mathrm{m}^{2}$ is Rs. 15000 , find the height of the hall. <br> [Hint: Area of the four walls = Lateral surface area.] |
| Q. 12 | In given figures ' $l$ ' is a line intersecting two concentric circles with centre P at points $\mathrm{A}, \mathrm{C}, \mathrm{D}$ and B show that $\mathrm{AC}=\mathrm{DB}$ <br> A, C, D and B show that |
| Q. 13 | Find the surface area of a sphere of radius: <br> (i) 10.5 cm <br> (ii) 5.6 cm <br> (iii) 14 cm $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 14 | If diagonals of a cyclic quadrilateral are diameters of the circle through the vertices of the quadrilateral, prove that it is a rectangle. |
| Q. 15 | Diagonals AC and BD of a quadrilateral ABCD intersect at O in such a way that ar $(\mathrm{AOD})=$ ar $(\mathrm{BOC})$. Prove that ABCD is a trapezium. |


| Q. 16 | If two equal chords of a circle intersect within the circle, prove that the segments of one chord are equal to corresponding segments of the other chord. |
| :---: | :---: |
| Q. 17 | Give the equations of two lines passing through ( 2,14 ). How many more such lines are there, and why? |
| Q. 18 | Construct $\triangle \mathrm{ABC}$ in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{ABC}=45^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm}$. |
| Q. 19 | Fill in the blanks <br> (i) The centre of a circle lies in $\qquad$ of the circle. (exterior/ interior) <br> (ii) A point, whose distance from the centre of a circle is greater than its radius lies in $\qquad$ of the circle. (exterior/ interior) <br> (iii) The longest chord of a circle is a $\qquad$ of the circle. <br> (iv) An arc is a $\qquad$ when its ends are the ends of a diameter. <br> (v) Segment of a circle is the region between an arc and $\qquad$ of the circle. <br> (vi) A circle divides the plane, on which it lies, in $\qquad$ parts. |
| Q. 20 | Construct an angle of $45^{\circ}$ at the initial point of a given ray and justify the construction. |
| Q. 21 | In a triangle $\mathrm{ABC}, \mathrm{E}$ is the mid-point of median AD . Show that $\operatorname{ar}(B E D)=\frac{1}{4} \operatorname{ar}(A B C)$ |
| Q. 22 | Twenty seven solid iron spheres, each of radius $r$ and surface area $S$ are melted to form a sphere with surface area $S "$. Find the <br> (i) radius $r^{\prime \prime}$ of the new sphere, <br> (ii) ratio of $S$ and $S^{\prime \prime}$. |
| Q. 23 | $D$ and $E$ are points on sides $A B$ and $A C$ respectively of $\triangle A B C$ such that $\operatorname{ar}(\mathrm{DBC})=\operatorname{ar}(\mathrm{EBC})$. Prove that DE $\\| \mathrm{BC}$. |
| Q. 24 | Construct the following angles and verify by measuring them by a protractor: <br> (i) $75^{\circ}$ <br> (ii) $105^{\circ}$ <br> (iii) $135^{\circ}$ |
| Q. 25 | In the given figure, $\operatorname{ar}(\mathrm{DRC})=\operatorname{ar}(\mathrm{DPC})$ and $\operatorname{ar}(\mathrm{BDP})=\operatorname{ar}(\mathrm{ARC})$. Show that both the quadrilaterals ABCD and DCPR are trapeziums. |
| Q. 26 | Circumference of the base of a cylinder, open at the top, is 132 cm . The sum of radius and height is 41 cm . Find cost of polishing the outer surface area of cylinder at the rate Rs. 10 per square dm(decimeter). Take $\pi=\frac{22}{7}$ |
| Q. 27 | Parveen wanted to make a temporary shelter for her car, by making a box-like structure with tarpaulin that covers all the four sides and the top of the car (with the front face as a flap which can be rolled up). |

Assuming that the stitching margins are very small, and therefore negligible, how much tarpaulin would be required to make the shelter of height 2.5 m , with base dimensions $4 \mathrm{~m} \times 3 \mathrm{~m}$ ?

| Q. 28 | Three coins are tossed simultaneously 200 times with the following frequencies of different outcomes: |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | Outcome 3 heads 2 heads 1 head No head <br>  Frequency 23 72 77 |  |  |  |

If the three coins are simultaneously tossed again, compute the probability of 2 heads coming up.
Q. 29 The inner diameter of a cylindrical wooden pipe is 24 cm and its outer diameter is 28 cm . The length of the pipe is 35 cm . Find the mass of the pipe, if $1 \mathrm{~cm}^{3}$ of wood has a mass of 0.6 g .
$\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$
Q. $30 \quad$ A dome of a building is in the form of a hemisphere. From inside, it was white-washed at the cost of Rs 498.96. If the cost of white-washing is Rs 2.00 per square meter, find the
(i) inside surface area of the dome,
(ii) volume of the air inside the dome.

Use $\left.\pi=\frac{22}{7}\right]$

| Q. 31 | $\begin{array}{l}\text { The length, breadth and height of a room are } 5 \mathrm{~m}, 4 \mathrm{~m} \text { and } 3 \mathrm{~m} \text { respectively. Find the cost of white } \\ \text { washing the walls of the room and the ceiling at the rate of Rs } 7.50 \text { per } \mathrm{m}^{2} .\end{array}$ |
| :--- | :--- |

Q. 32 Draw different pairs of circles. How many points does each pair have in common? What is the maximum number of common points?
Q. 33 The diameter of a sphere is decreased by $25 \%$. By what per cent does its curved surface area decrease?
Q. 34 Which one of the following options is true, and why?
$y=3 x+5$ has
(i) a unique solution,
(ii) only two solutions,
(iii) infinitely many solutions
Q. 35 A plastic box 1.5 m long, 1.25 m wide and 65 cm deep, is to be made. It is to be open at the top. Ignoring the thickness of the plastic sheet, determine:
(i) The area of the sheet required for making the box.
(ii) The cost of sheet for it, if a sheet measuring $1 \mathrm{~m}^{2}$ costs Rs 20 .
Q. 36 Three cubes of side 10 cm each are joined end to end to make cuboid. Find the surface area of resulting solid.
Q. 37 In the given figure, you see the frame of a lampshade. It is to be covered with a decorative cloth. The frame has a base diameter of 20 cm and height of 30 cm . A margin of 2.5 cm is to be given for folding it over the top and bottom of the frame. Find how much cloth is required for covering the lampshade.
$\left[\right.$ Use $\left.^{\pi}=\frac{22}{7}\right]$




|  | $\text { ar }(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACE}) .$ |
| :---: | :---: |
| Q. 68 | Give five examples of data that you can collect from day to day life. |
| Q. 69 | It is required to make a closed cylindrical tank of height 1 m and base diameter 140 cm from a metal sheet. How many square meters of the sheet are required for the same? $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 70 | The diameter of a roller is 84 cm and its length is 120 cm . It takes 500 complete revolutions to move once over to level a playground. Find the area of the playground in $\mathrm{m}^{2}$ ? <br> $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$ |
| Q. 71 | Refer to this table: |
|  | Marks ${ }^{\text {Number of Students }}$ |
|  | 0-20 |
|  | 20-30 10 |
|  | 30-40 10 |
|  | 40-50 20 |
|  | 50-60 20 |
|  | $60-70$ |
|  | 70 above 8 |
|  | Total 90 |
|  | (i) Find the probability that a student obtained less than $20 \%$ in themathematics test. <br> (ii) Find the probability that a student obtained marks 60 or above. |
| Q. 72 | A godown measures $40 \mathrm{~m} \times 25 \mathrm{~m} \times 10 \mathrm{~m}$. Find the maximum number of wooden crates each measuring $1.5 \mathrm{~m} \times 1.25 \mathrm{~m} \times 0.5 \mathrm{~m}$ that can be stored in the godown. |
| Q. 73 | In the given figure, $A B C$ and $A B D$ are two triangles on the same base $A B$. If line-segment $C D$ is bisected by AB at O , show that $\operatorname{ar}(\mathrm{ABC})=\operatorname{ar}(\mathrm{ABD})$. |


|  |  |
| :---: | :---: |
| Q. 74 | A matchbox measures $4 \mathrm{~cm} \times 2.5 \mathrm{~cm} \times 1.5 \mathrm{~cm}$. What will be the volume of a packet containing 12 such boxes? |
| Q. 75 | Find the total surface area of a cone, if its slant height is 21 m and diameter of its base is 24 m . $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 76 | The radius of sphere is 5 cm . If the radius is increased by $20 \%$. Find by how much percent volume is increased. |
| Q. 77 | Two years later a father will be eight years more than three times the age of the son. Taking the present age of father and son as $x$ and $y$ respectively <br> (a) Write a linear equation for the above and draw its graph. <br> (b) From the graph find the age of father when son's age is 10 years. |
| Q. 78 | Construct a right triangle whose base is 12 cm and sum of its hypotenuse and other side is 18 cm . |
| Q. 79 | Construct a triangle ABC in which $\mathrm{BC}=7 \mathrm{~cm}, \angle \mathrm{~B}=75^{\circ}$ and $\mathrm{AB}+\mathrm{AC}=13 \mathrm{~cm}$. |
| Q. 80 | Curved surface area of a right circular cylinder is $4.4 \mathrm{~m}^{2}$. If the radius of the base of the cylinder is 0.7 m , find its height. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 81 | Find the radius of a sphere whose surface area is $154 \mathrm{~cm}^{2}$. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 82 | A right circular cylinder just encloses a sphere of radius $r$ (see figure). Find <br> (i) surface area of the sphere, <br> (ii) curved surface area of the cylinder, <br> (iii) ratio of the areas obtained in (i) and (ii). |
| Q. 83 | A hemispherical bowl made of brass has inner diameter 10.5 cm . Find the cost of tin-plating it on the inside at the rate of Rs 16 per $100 \mathrm{~cm}^{2}$. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 84 | The diameter of the moon is approximately one-fourth of the diameter of the earth. Find the ratio of their surface area. |


| Q. 85 | How many meters of 5 m wide cloth will be required to make a conical tent, the radius of whose base is 3.5 m and height is 12 m . |
| :---: | :---: |
| Q. 86 | If the lateral surface of a cylinder is $94.2 \mathrm{~cm}^{2}$ and its height is 5 cm , then find <br> (i) radius of its base <br> (ii) its volume. <br> [Use $\pi=3.14$ ] |
| Q. 87 | A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres? |
| Q. 88 | A cylindrical pillar is 50 cm in diameter and 3.5 m in height. Find the cost of painting the curved surface of the pillar at the rate of Rs. 12.50 per $\mathrm{m}^{2}$. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 89 | A joker's cap is in the form of right circular cone of base radius 7 cm and height 24 cm . Find the area of the sheet required to make 10 such caps. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 90 | In figure, it is given that BDEF and FDCE are parallelograms. Show that $\mathrm{BD}=\mathrm{CD}$. |
| Q. 91 | A village, having a population of 4000 , requires 150 litres of water per head per day. It has a tank measuring $20 \mathrm{~m} \times 15 \mathrm{~m} \times 6 \mathrm{~m}$. For how many days will the water of this tank last? |
| Q. 92 | If circles are drawn taking two sides of a triangle as diameters, prove that the point of intersection of these circles lie on the third side. |
| Q. 93 | A hemispherical bowl is made of steel, 0.25 cm thick. The inner radius of the bowl is 5 cm . Find the outer curved surface area of the bowl. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 94 | The side AB of a parallelogram ABCD is produced to any point P . A line through A and parallel to CP meets CB produced at Q and then parallelogram PBQR is completed (see the following figure). Show that ar $(\mathrm{ABCD})=$ ar $(\mathrm{PBQR})$. <br> [Hint: Join AC and PQ. Now compare area (ACQ) and area (APQ)] |


| Q. 95 | A random survey of the number of children of various age groups playing in park was found as follows: |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Age (in years) |  |  |  |  | Number of children |  |  |  |  |
|  | 1-2 |  |  |  |  | 5 |  |  |  |  |
|  | 2-3 |  |  |  |  | 6 |  |  |  |  |
|  | 3-5 |  |  |  |  | 3 |  |  |  |  |
|  | 5-7 |  |  |  |  | 12 |  |  |  |  |
|  | 7-10 |  |  |  |  | 9 |  |  |  |  |
|  | 10-15 |  |  |  |  | 10 |  |  |  |  |
|  | 15-17 |  |  |  |  | 4 |  |  |  |  |
|  | Draw a histogram to represent the data above. |  |  |  |  |  |  |  |  |  |
| Q. 96 | If $(2,3)$ and $(4,0)$ lie on the graph of equation $a x+b y=1$. Find value of $a$ and $b$. Plot the graph of equation obtained. |  |  |  |  |  |  |  |  |  |
| Q. 97 | A soft drink is available in two packs - <br> (i) a tin can with a rectangular base of length 5 cm and width 4 cm , having a height of 15 cm and <br> (ii) a plastic cylinder with circular base of diameter 7 cm and height 10 cm . <br> Which container has greater capacity and by how much? $\left[\text { Use } \pi=\frac{22}{7}\right]$ |  |  |  |  |  |  |  |  |  |
| Q. 98 | The taxi fare in a city is as follows: For the first kilometre, the fares is Rs 8 and for the subsequent distance it is Rs 5 per km . Taking the distance covered as x km and total fare as Rs y , write a linear equation for this information, and draw its graph. |  |  |  |  |  |  |  |  |  |
| Q. 99 | A patient in a hospital is given soup daily in a cylindrical bowl of diameter 7 cm . If the bowl is filled with soup to a height of 4 cm , how much soup the hospital has to prepare daily to serve 250 patients?$\left[\text { Use } \pi=\frac{22}{7}\right]$ |  |  |  |  |  |  |  |  |  |
| Q. 100 | What length of tarpaulin 3 m wide will be required to make conical tent of height 8 m and base radius 6 m ? Assume that the extra length of material that will be required for stitching margins and wastage in cutting is approximately 20 cm . <br> [Use $\pi=3.14$ ] |  |  |  |  |  |  |  |  |  |
| Q. 101 | The blood groups of 30 students of Class VIII are recoded as follows: <br> $\mathrm{A}, \mathrm{B}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{O}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{O}$, <br> $\mathrm{A}, \mathrm{AB}, \mathrm{O}, \mathrm{A}, \mathrm{A}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{B}, \mathrm{A}, \mathrm{O}, \mathrm{B}, \mathrm{A}, \mathrm{B}, \mathrm{O}$. <br> Represent this data in the form of a frequency distribution table. Which is the most common, and which is the rarest, blood group among these students? |  |  |  |  |  |  |  |  |  |
| Q. 102 | Construct a triangle PQR in which $\mathrm{QR}=6 \mathrm{~cm}, \angle \mathrm{Q}=60^{\circ}$ and $\mathrm{PR}-\mathrm{PQ}=2 \mathrm{~cm}$. |  |  |  |  |  |  |  |  |  |
| Q. 103 | The distance (in km ) of 40 engineers from their residents to their place of work were found as follows: |  |  |  |  |  |  |  |  |  |
|  | 5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
|  | 19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
|  | 7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
|  | 12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |

What is the empirical probability of that an engineer lives
(i) Less than 7 km from her place of work?
(ii) More than or equal to 7 km from her place of work?
(iii) Within $1 / 2 \mathrm{~km}$ from her place of work?
Q. 104 In the following figure, ABCD, DCFE and ABFE are parallelograms. Show that ar $(\mathrm{ADE})=$ ar $(\mathrm{BCF})$.

Q. 105 In a hot water heating system, there is a cylindrical pipe of length 28 m and diameter 5 cm . Find the total radiating surface in the system.
Use $\pi=\frac{22}{7}$ ]
Q. 106 A company manufactures car batteries of a particular type. The lives (in years) of 40 such batteries were recorded as follows:

| 2.6 | 3.0 | 3.7 | 3.2 | 2.2 | 4.1 | 3.5 | 4.5 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 3.5 | 2.3 | 3.2 | 3.4 | 3.8 | 3.2 | 4.6 | 3.7 |
| 2.5 | 4.4 | 3.4 | 3.3 | 2.9 | 3.0 | 4.3 | 2.8 |
| 3.5 | 3.2 | 3.9 | 3.2 | 3.2 | 3.1 | 3.7 | 3.4 |
| 4.6 | 3.8 | 3.2 | 2.6 | 3.5 | 4.2 | 2.9 | 3.6 |

Construct a grouped frequency distribution table for this data, using class intervals of size 0.5 starting from the intervals $2-2.5$.
Q. 107 Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that $\angle \mathrm{ABC}$ is equal to half the difference of the angles subtended by the chords AC and DE at the centre.
Q. 108 Parallelogram ABCD and rectangle ABEF are on the same base AB and have equal areas. Show that the perimeter of the parallelogram is greater than that of the rectangle.
Q. 109 In the following figure, ABCD is parallelogram and BC is produced to a point Q such that $\mathrm{AD}=\mathrm{CQ}$. If $A Q$ intersect $D C$ at $P$, show that ar $(\mathrm{BPC})=$ ar $(\mathrm{DPQ})$.
[Hint: Join AC.]


| Q. 110 | In the given figure, ABCDE is a pentagon. A line through B parallel to AC meets DC produced at F . Show that <br> (i) ar $(\mathrm{ACB})=\operatorname{ar}(\mathrm{ACF})$ <br> (ii) ar $(\mathrm{AEDF})=$ ar $(\mathrm{ABCDE})$ |
| :---: | :---: |
| Q. 111 | In the given figure, PQRS and ABRS are parallelograms and X is any point on side BR . Show that (i) ar $(\mathrm{PQRS})=$ ar (ABRS) <br> (ii) $\operatorname{ar}(\triangle P X S)=\frac{1}{2} \operatorname{ar}($ PQRS $)$ |
| Q. 112 | Give geometric representation of $2 \mathrm{y}+7=0$ as an equation <br> (i) in one, variable <br> (ii) in two variables |
| Q. 113 | A conical tent is 10 m high and the radius of its base is 24 m . Find <br> (i) slant height of the tent <br> (ii) cost of the canvas required to make the tent, if the cost of $1 \mathrm{~m}^{2}$ canvas is Rs 70 . $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 114 | How many square metres of canvas is required for a conical tent whose height is 3.5 m and radius of whose base is 12 m ? Take $\pi=\frac{22}{7}$ |
| Q. 115 | If $\mathrm{E}, \mathrm{F}, \mathrm{G}$ and H are respectively the mid-points of the sides of a parallelogram ABCD show that $\operatorname{ar}(E F G H)=\frac{1}{2} \operatorname{ar}(A B C D)$ |
| Q. 116 | ABCD is a cyclic quadrilateral whose diagonals intersect at a point E . If $\angle \mathrm{DBC}=70^{\circ}, \angle \mathrm{BAC}$ is $30^{\circ}$, find $\angle B C D$. Further, if $A B=B C$, find $\angle E C D$. |
| Q. 117 | A right triangle ABC with sides $5 \mathrm{~cm}, 12 \mathrm{~cm}$ and 13 cm is revolved about the side 12 cm . Find the volume of the solid so obtained. |
| Q. 118 | A storage tank is in the form of a cube. When it is full of water the volume of water is $15.625 \mathrm{~m}^{3}$. If the present depth of water is 1.3 m . Find the volume of water used. |
| Q. 119 | A hollow cube of side 4 cm contains a solid sphere touching its sides. Find the volume of gaps between sphere and walls of cube. |
| Q. 120 | To know the opinion of the students about the subject statistics, a survey of 200 students was conducted. The data is recorded in the following table: |
|  | Opinion Number of Students |



(i) Represent the given information with the help of a histogram.
(ii) How many lamps have a lifetime of more than 700 hours?
Q. 132 Three girls Reshma, Salma and Mandip are playing a game by standing on a circle of radius 5 m drawn in a park. Reshma throws a ball to Salma, Salma to Mandip, Mandip to Reshma. If the distance between Reshma and Salma and between Salma and Mandip is 6 m each, what is the distance between Reshma and Mandip?
Q. 133 Draw a histogram of distribution table of the marks scored by 75 students of class IX.

| Marks obtained | Number of students |
| :--- | :--- |
| $0-10$ | 4 |
| $10-20$ | 8 |
| $20-40$ | 20 |
| $40-45$ | 10 |
| $45-60$ | 12 |
| $60-70$ | 6 |
| $70-85$ | 15 |

Q. 134 Shanti Sweets Stall was placing an order for making cardboard boxes for packing their sweets. Two sizes of boxes were required. The bigger of dimensions $25 \mathrm{~cm} \times 20 \mathrm{~cm} \times 5 \mathrm{~cm}$ and the smaller of dimensions $15 \mathrm{~cm} \times 12 \mathrm{~cm} \times 5 \mathrm{~cm}$. For all the overlaps, $5 \%$ of the total surface area is required extra. If the cost of the cardboard is Rs 4 for $1000 \mathrm{~cm}^{2}$, find the cost of cardboard required for supplying 250 boxes of each kind.

Q. 148 Write four solutions for each of the following equations:
(i) $2 x+y=7$
(ii) $\pi x+y=9$
(iii) $x=4 y$
Q. 149 In the following figure, ABC is a right triangle right angled at A . $\mathrm{BCED}, \mathrm{ACFG}$ and ABMN are squares on the sides $\mathrm{BC}, \mathrm{CA}$ and AB respectively. Line segment $\mathrm{AX} \perp \mathrm{DE}$ meets BC at Y . Show that:

(i) $\triangle \mathrm{MBC} \cong \triangle \mathrm{ABD}$
(ii) $\operatorname{ar}(\mathrm{BYXD})=2 \operatorname{ar}(\mathrm{MBC})$
(iii) $\operatorname{ar}(\mathrm{BYXD})=\operatorname{ar}(\mathrm{ABMN})$
(iv) $\triangle \mathrm{FCB} \cong \triangle \mathrm{ACE}$
(v) $\operatorname{ar}(\mathrm{CYXE})=2 \operatorname{ar}(\mathrm{FCB})$
(vi) $\operatorname{ar}(\mathrm{CYXE})=\operatorname{ar}(\mathrm{ACFG})$
(vii) $\operatorname{ar}(\mathrm{BCED})=\operatorname{ar}(\mathrm{ABMN})+\operatorname{ar}(\mathrm{ACFG})$
Q. 150 The distance (in km ) of 40 engineers from their residents to their place of work were found as follows:

| 5 | 3 | 10 | 20 | 25 | 11 | 13 | 7 | 12 | 31 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 19 | 10 | 12 | 17 | 18 | 11 | 32 | 17 | 16 | 2 |
| 7 | 9 | 7 | 8 | 3 | 5 | 12 | 15 | 18 | 3 |
| 12 | 14 | 2 | 9 | 6 | 15 | 15 | 7 | 6 | 12 |

Construct a grouped frequency distribution table with class size 5 for the data given above taking the first interval as 0-5 (5 not included). What main feature do you observe from this tabular representation?
Q. 151 A study was conducted to find out the concentration of sulphur dioxide in the air in parts per million (ppm) of a certain city. The data obtained for 30 days is as follows:

| 0.03 | 0.08 | 0.08 | 0.09 | 0.04 | 0.17 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0.16 | 0.05 | 0.02 | 0.06 | 0.18 | 0.20 |
| 0.11 | 0.08 | 0.12 | 0.13 | 0.22 | 0.07 |
| 0.08 | 0.01 | 0.10 | 0.06 | 0.09 | 0.18 |
| 0.11 | 0.07 | 0.05 | 0.07 | 0.01 | 0.04 |

(i) Make a grouped frequency distribution table for this data with class intervals as $0.00-0.04,0.04-$ 0.08 , and so on.
(ii) For how many days, was the concentration of sulphur dioxide more than 0.11 parts per million?

| Q. 152 | The diameter of a metallic ball is 4.2 cm . What is the mass of the ball, if the density of the metal is 8.9 g <br> per $\mathrm{cm}^{3}$ ? <br> $\left[\right.$ Use $\left.\boldsymbol{\pi}=\frac{\mathbf{2 2}}{\mathbf{7}}\right]$ |
| :--- | :--- | :--- | :--- | :--- |
| Q. 153 | If two circles intersect at two points, then prove that their centres lie on the perpendicular bisector of the <br> common chord. |
| Q. 154 | Two chords AB and CD of lengths 5 cm 11 cm respectively of a circle are parallel to each other and are <br> on opposite sides of its centre. If the distance between AB and CD is 6 cm , find the radius of the circle. |
| Q. 155 | Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent <br> circles subtend equal angles at their centres. |
| Prove that line joining the centers of two intersecting circles subtends equal angles at the two points of |  |
| intersection of circles. |  |
| Q. 157 |  |

Draw a histogram and a frequency polygon to represent the above data.
Q. 158 Draw the graph of each of the following linear equations in two variables:
(i) $x+y=4$
(ii) $x-y=2$
(iii) $y=3 x$
(iv) $3=2 x+y$
Q. 159 The following number of goals was scored by a team in a series of 10 matches:

$$
2,3,4,5,0,1,3,3,4,3
$$

Find the mean, median and mode of these scores.
Q. 160 Eleven bags of wheat flour, each marked 5 kg , actually contained the following weights of flour (in kg): $4.97 \quad 5.05$
Find the probability that any of these bags chosen at random contains more than 5 kg of flour.
Q. 161 The cost of a notebook is twice the cost of a pen. Write a linear equation in two variables to represent this statement.
Q. 162 The length of 40 leaves of a plant are measured correct to one millimetre, and the obtained data is represented in the following table:


| Q. 169 | If two equal chords of a circle intersect within the circle, prove that the line joining the point of intersection to the centre makes equal angles with the chords. |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Q. 170 | Find the volume of the right circular cone with <br> (i) radius 6 cm , height 7 cm <br> (ii) radius 3.5 cm , height 12 cm <br> $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$ |  |  |  |  |  |  |  |
| Q. 171 | A wooden bookshelf has external dimensions as follows: Height $=110 \mathrm{~cm}$, Depth $=25 \mathrm{~cm}$, Breadth $=85$ cm (see the given figure). The thickness of the plank is 5 cm everywhere. The external faces are to be polished and the inner faces are to be painted. If the rate of polishing is 20 paise per $\mathrm{cm}^{2}$ and the rate of painting is 10 paise per $\mathrm{cm}^{2}$, find the total expenses required for polishing and painting the surface of the bookshelf. |  |  |  |  |  |  |  |
| Q. 172 | The relative humidity (in \%) of a certain city for a month of 30 days was as follows: |  |  |  |  |  |  |  |
|  |  |  | 86 |  |  | 96.3 |  |  |
|  |  | 93.5 | 92.7 | 95.1 |  | 93.3 | . 2 | 7.3 |
|  | 96.2 92.1 84.9 |  | 95.7 | 98.3 |  | 96.1 | 92.1 | 89 |
|  | (i) Construct a grouped frequency distribution table with classes 84-86, 86-88 <br> (ii) Which month or season do you think this data is about? <br> (iii) What is the range of this data? |  |  |  |  |  |  |  |
| Q. 173 | A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are sitting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone. |  |  |  |  |  |  |  |
| Q. 174 | Suppose you are given a circle. Give a construction to find its centre. |  |  |  |  |  |  |  |
| Q. 175 | Prove that equal chords of a circle subtend equal angles at the centre. |  |  |  |  |  |  |  |
| Q. 176 | The paint in a certain container is sufficient to paint an area equal to $9.375 \mathrm{~m}^{2}$. How many bricks of dimensions $22.5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 7.5 \mathrm{~cm}$ can be painted out of this container? |  |  |  |  |  |  |  |
| Q. 177 | Digonals AC and BD of a quadrilateral ABCD intersect each other at P. Show that ar $(\mathrm{APB}) \mathrm{x}$ ar $(\mathrm{CPD})=$ ar (APD) x ar (BPC). <br> [Hint: From A and C, draw perpendiculars to BD] |  |  |  |  |  |  |  |
| Q. 178 | The runs scored by two teams A and B on the first 60 balls in a cricket match are given below: |  |  |  |  |  |  |  |
|  | Number of balls | Team A |  |  |  | Team B |  |  |
|  | 1-6 | 2 |  |  |  | 5 |  |  |


|  | 7-12 | 1 | 6 |
| :---: | :---: | :---: | :---: |
|  | 13-18 | 8 | 2 |
|  | 19-24 | 9 | 10 |
|  | 25-30 | 4 | 5 |
|  | 31-36 | 5 | 6 |
|  |  | 6 | 3 |
|  | 43-48 | 10 | 4 |
|  |  | 6 | 8 |
|  | 55-60 | 2 | 10 |
|  | Represen <br> [Hint: F | ams <br> als | olygo |
| Q. 179 | Bisector Prove th $90^{\circ}-$ |  |  |
| Q. 180 | In the gi <br> (i) ar (A <br> (ii) ar (A <br> [Hint: Th | the ar PB) arall | . Show |
| Q. 181 | If the po | h of | valu |
| Q. 182 | In the gi |  |  |



| Q. 190 | ABC and ADC are two right triangles with common hypotenuse AC . Prove that $\angle \mathrm{CAD}=\angle \mathrm{CBD}$. |
| :---: | :---: |
| Q. 191 | Give one example of a situation in which <br> (i) The mean is an appropriate measure of central tendency. <br> (ii) The mean is not an appropriate measure of central tendency but the median is an appropriate measure of central tendency. |
| Q. 192 | A cone and cylinder are having equal base radius. Find the ratio of the heights of cone and cylinder if their volume are equal. |
| Q. 193 | Solve the linear equation for ' $x$ ': $\frac{2 x-3}{5}+\frac{x+3}{4}=\frac{2 x+3}{4}$ |
| Q. 194 | If the work done by a body on application of a constant force is directly proportional to the distance travelled by the body, express this in the form of an equation in two variables and draw the graph of the same by taking the constant force as 5 units. Also read from the graph the work done when the distance travelled by the body is <br> (i) 2 units <br> (ii) 0 units |
| Q. 195 | The circumference of the base of cylindrical vessel is 132 cm and its height is 25 cm . How many litres of water can it hold? $\left(1000 \mathrm{~cm}^{3}=11\right)$ <br> $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$ |
| Q. 196 | If the volume of a sphere is divided by its surface area then the result is 27 . Find the radius of sphere. |
| Q. 197 | A hemispherical tank is made up of an iron sheet 1 cm thick. If the inner radius is 1 m , then find the volume of the iron used to make the tank. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 198 | A metal pipe is 77 cm long. The inner diameter of a cross section is 4 cm , the outer diameter being 4.4 cm. <br> (i) Inner curved surface area, <br> (ii) Outer curved surface area, <br> (iii) Total surface area. <br> [Use $\pi=\frac{22}{7}$ ] |
| Q. 199 | Given below are the seats won by different political parties in the polling outcome of a state assembly elections: |
|  |  |
|  |  |
|  | (i) Draw a bar graph to represent the polling results. <br> (ii) Which political party won the maximum number of seats? |


| Q. 200 | Construct a triangle ABC in which $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~B}=45^{\circ}$ and $\mathrm{AB}-\mathrm{AC}=3.5 \mathrm{~cm}$. |
| :---: | :---: |
| Q. 201 | The blood groups of 30 students of Class VIII are recoded as follows: $\begin{aligned} & \mathrm{A}, \mathrm{~B}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{O}, \mathrm{~A}, \mathrm{O}, \mathrm{~B}, \mathrm{~A}, \mathrm{O}, \mathrm{~B}, \mathrm{~A}, \mathrm{O}, \mathrm{O} \\ & \mathrm{~A}, \mathrm{AB}, \mathrm{O}, \mathrm{~A}, \mathrm{~A}, \mathrm{O}, \mathrm{O}, \mathrm{AB}, \mathrm{~B}, \mathrm{~A}, \mathrm{O}, \mathrm{~B}, \mathrm{~A}, \mathrm{~B}, \mathrm{O} \end{aligned}$ <br> Using this data, find the probability that a student of this class, selected at random, has blood group AB . |
| Q. 202 | In the following figure, D and E are two points on BC such that $\mathrm{BD}=\mathrm{DE}=\mathrm{EC}$. Show that ar $(\mathrm{ABD})=\mathrm{ar}$ $(\mathrm{ADE})=\operatorname{ar}(\mathrm{AEC})$. |
| Q. 203 | Find the mode of $14,25,14,28,18,17,18,14,23,22,14,18$. |
| Q. 204 | The lengths of two parallel chords of a circle are 6 cm and 8 cm . If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre? |
| Q. 205 | If the volume of a right circular cone of height 9 cm is $48 \pi \mathrm{~cm}^{3}$, find the diameter of its base. |
| Q. 206 | Give the geometric representations of $2 \mathrm{x}+9=0$ as an equation <br> (1) in one variable <br> (2) in two variables |
| Q. 207 | AC and BD are chords of a circle which bisect each other. Prove that <br> (i) AC and BD are diameters; <br> (ii) ABCD is a rectangle. |
| Q. 208 | A capsule of medicine is in the shape of a sphere of diameter 3.5 mm . How much medicine (in $\mathrm{mm}^{3}$ ) is needed to fill this capsule? <br> $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$ |
| Q. 209 | Which of the following figures lie on the same base and between the same parallels. In such a case, write the common base and the two parallels. <br> (i) <br> (iv) <br> (ii) <br> (v) <br> (iii) <br> (vi) |
| Q. 210 | In the following figure, ABC and BDE are two equilateral triangles such that D is the mid-point of BC . If $A E$ intersects $B C$ at $F$, show that |


|  | (i) $\operatorname{ar}(B D E)=\frac{1}{4} \operatorname{ar}(A B C)$ <br> (ii) $\operatorname{ar}(B D E)=\frac{1}{2} \operatorname{ar}(B A E)$ <br> (iii) $\operatorname{ar}(A B C)=2 \operatorname{ar}(B E C)$ <br> (iv) ar (BFE) = ar (AFD) <br> (v) ar (BFE) = 2 ar (FED) <br> (vi) ar (FED) $=\frac{1}{8} \operatorname{ar}(A F C)$ |
| :---: | :---: |
| Q. 211 | In the given figure, $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D are four points on a circle. AC and BD intersect at a point E such that $\angle B E C=130^{\circ}$ and $\angle E C D=20^{\circ}$. Find $\angle B A C$. |
| Q. 212 | XY is a line parallel to side BC of a triangle ABC . If $\mathrm{BE} \\| \mathrm{AC}$ and $\mathrm{CF} \\| \mathrm{AB}$ meet XY at E and E respectively, show that $\text { ar }(\mathrm{ABE})=\operatorname{ar}(\mathrm{ACF})$ |
| Q. 213 | Construct $\triangle \mathrm{ABC}$ such that $\angle \mathrm{B}=60^{\circ}, \angle \mathrm{C}=45^{\circ}$ and $\mathrm{AB}+\mathrm{BC}+\mathrm{CA}=10 \mathrm{~cm}$. |
| Q. 214 | Find median of following data : 17, 23, 57, 46, 33, 29, 28, 30, 34. If observation 23 is removed from data then find new median. |
| Q. 215 | Find the surface area of a sphere of diameter: <br> (i) 14 cm <br> (ii) 21 cm |



|  |  |
| :---: | :---: |
| Q. 223 | In the given figure, AD is median. Prove that ar $(\triangle \mathrm{ABD})=$ ar $(\triangle \mathrm{ACD})$. |
| Q. 224 | The slant height and base diameter of a conical tomb are 25 m and 14 m respectively. Find the cost of white-washing its curved surface at the rate of Rs 210 per $100 \mathrm{~m}^{2}$. $\left[\text { Use } \pi=\frac{22}{7}\right]$ |
| Q. 225 | 1500 family with 2 children were selected randomly and the following data was recorded. <br> Compute probability of a family chosen at random having <br> (a) at most 1 girl <br> (b) at least 2 girls |
| Q. 226 | Check which of the following are solutions of the equation $x-2 y=4$ and which are not: <br> (i) $(0,2$ <br> (ii) $(2,0)$ <br> (iii) $(4,0)$ $\text { (iv) }(\sqrt{2}, 4 \sqrt{2})$ <br> (v) $(1,1)$ |
| Q. 227 | For what value of "a" $12,14,15,27, a+2, a+4,35,36,40,41$ the median of the following observation arranged in ascending order is 32 . |
| Q. 228 | Draw the graph of equation $3 x+y=6$. Also find the points when the line intersect $x$-axis and $y$-axis. |
| Q. 229 | A heap of wheat is in the form of a cone whose diameter is 10.5 m and height is 3 m . Find its volume. The heap is to be covered by canvas to protect it from rain. Find the area of the canvas required. |
| Q. 230 | The capacity of a cuboidal tank is 50000 litres of water. Find the breadth of the tank, if its length and depth are respectively 2.5 m and 10 m . |




